beta-Arrestin 1-GFP or beta-arrestin 2-GFP were coexpressed transiently with G protein-coupled receptor kinase 2 within cells stably expressing the orexin-1, apelin or melanin-concentrating hormone (MCH), receptors. In response to agonist ligands both the orexin-1 and apelin receptors were able to rapidly translocate both beta-arrestin 1-GFP and beta-arrestin 2-GFP from cytoplasm to the plasma membrane. For the MCH receptor this was only observed for beta-arrestin 2-GFP. beta-Arrestin 1-GFP translocated by the apelin receptor remained at the plasma membrane during prolonged exposure to ligand even though the receptor became internalized. By contrast, for the orexin-1 receptor, internalization of beta-arrestin 1-GFP within punctate vesicles could be observed for over 60 min in the continued presence of agonist. Co-internalization of the orexin-1 receptor was observed by monitoring the binding and trafficking of TAMRA-(5- and 6-carboxytetramethylrhodamine) labelled orexin-A. Subsequent addition of an orexin-1 receptor antagonist resulted in cessation of incorporation of beta-arrestin 1-GFP into vesicles at the plasma membrane and a gradual clearance of beta-arrestin 1-GFP from intracellular vesicles. For the melanin-concentrating hormone receptor the bulk of translocated beta-arrestin 2-GFP was maintained at concentrated foci close to, or at, the plasma membrane. These results demonstrate very distinct features of beta-arrestin-GFP interactions and trafficking for three G protein-coupled receptors for which the natural ligands have only recently been identified and which were thus previously considered as orphan receptors.