Development and characterization of novel erythropoiesis stimulating protein (NESP)

Br J Cancer. 2001 Apr;84 Suppl 1(Suppl 1):3-10. doi: 10.1054/bjoc.2001.1746.


Studies on human erythropoietin (EPO) demonstrated that there is a direct relationship between the sialic acid-containing carbohydrate content of the molecule and its serum half-life and in vivo biological activity, but an inverse relationship with its receptor-binding affinity. These observations led to the hypothesis that increasing the carbohydrate content, beyond that found naturally, would lead to a molecule with enhanced biological activity. Hyperglycosylated recombinant human EPO (rHuEPO) analogues were developed to test this hypothesis. Darbepoetin alfa (novel erythropoiesis stimulating protein, NESP, ARANESP, Amgen Inc, Thousand Oaks, CA), which was engineered to contain 5 N-linked carbohydrate chains (two more than rHuEPO), has been evaluated in preclinical animal studies. Due to its increased sialic acid-containing carbohydrate content, NESP is biochemically distinct from rHuEPO, having an increased molecular weight and greater negative charge. Compared with rHuEPO, it has an approximate 3-fold longer serum half-life, greater in vivo potency, and can be administered less frequently to obtain the same biological response. NESP is currently being evaluated in human clinical trials for treatment of anaemia and reduction in its incidence.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Carbohydrate Conformation
  • Cross-Over Studies
  • Darbepoetin alfa
  • Drug Administration Schedule
  • Drug Design
  • Drug Evaluation, Preclinical
  • Erythropoiesis / drug effects
  • Erythropoietin / analogs & derivatives
  • Erythropoietin / chemistry*
  • Erythropoietin / immunology
  • Erythropoietin / pharmacokinetics
  • Erythropoietin / pharmacology
  • Erythropoietin / therapeutic use
  • Glycosylation
  • Half-Life
  • Hematocrit
  • Humans
  • Mice
  • N-Acetylneuraminic Acid / chemistry
  • Peritoneal Dialysis
  • Protein Conformation
  • Protein Engineering
  • Randomized Controlled Trials as Topic
  • Rats
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / immunology
  • Recombinant Proteins / pharmacology
  • Recombinant Proteins / therapeutic use


  • Recombinant Proteins
  • Erythropoietin
  • Darbepoetin alfa
  • N-Acetylneuraminic Acid