Expression of cystic fibrosis transmembrane conductance regulator in rat efferent duct epithelium

Biol Reprod. 2001 May;64(5):1509-15. doi: 10.1093/biolreprod/64.5.1509.


The expression of cystic fibrosis transmembrane conductance regulator (CFTR) was studied in rat efferent ducts. Under whole-cell patch-clamp condition, efferent duct cells responded to intracellular cAMP with a rise in inward current. The cAMP-activated current exhibited a linear I-V relationship and time- and voltage-independent characteristics. The current was inhibited by the Cl(-) channel blocker diphenylamine 2,2'-dicarboxylic acid (DPC) in a voltage-dependent manner and reversed at 24 +/- 0.5 mV, close to the equilibrium potential for Cl(-) (30 mV), suggesting that the current was Cl(-) selective. The cAMP-activated current displayed a permeability sequence of Br(-) > Cl(-) > I(-). Short-circuit current measurement in cultured rat efferent duct epithelia also revealed a cAMP-activated inward current inhibitable by DPC. These electrophysiological properties of the cAMP-activated Cl(-) conductance in the efferent duct were consistent with those reported for CFTR. In support of the functional studies, reverse transcription polymerase chain reaction revealed the presence of CFTR message in cultured efferent duct epithelium. Immunohistochemical studies in intact rats also demonstrated CFTR protein at the apical membrane of the principal cells of efferent duct. CFTR may play a role in modulating fluid transport in the efferent duct.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anions
  • Cells, Cultured
  • Chloride Channels / physiology
  • Cyclic AMP / pharmacology
  • Cystic Fibrosis Transmembrane Conductance Regulator / analysis
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • Cystic Fibrosis Transmembrane Conductance Regulator / physiology
  • Electric Conductivity
  • Epididymis / chemistry
  • Epididymis / physiology
  • Epithelial Cells / chemistry
  • Epithelial Cells / physiology
  • Gene Expression*
  • Male
  • Patch-Clamp Techniques
  • RNA, Messenger / analysis
  • Rats
  • Rats, Sprague-Dawley
  • Reverse Transcriptase Polymerase Chain Reaction
  • Testis / chemistry*
  • Testis / physiology


  • Anions
  • Chloride Channels
  • RNA, Messenger
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Cyclic AMP