Compared With Nibbling, Neither Gorging Nor a Morning Fast Affect Short-Term Energy Balance in Obese Patients in a Chamber Calorimeter

Int J Obes Relat Metab Disord. 2001 Apr;25(4):519-28. doi: 10.1038/sj.ijo.0801572.


Objective: To test if a diet of 4.2 MJ/24 h as six isocaloric meals would result in a lower subsequent energy intake, or greater energy output than (a) 4.2 MJ/24 h as two isocaloric meals or (b) a morning fast followed by free access to food.

Design: Subjects were confined to the Metabolic Unit from 19:00 h on day 1 to 09:30 h on day 6. Each day they had a fixed diet providing 4.2 MJ with three pairs of meal patterns which were offered in random sequence. They were: six meals vs two meals without access to additional foods (6vs2), or six meals vs 2 meals with access to additional food (6+vs2+), or six meals vs four meals (6+vsAMFAST). In the AMFAST condition the first two meals of the day were omitted to reduce daily intake to 2.8 MJ and to create a morning fast, but additional food was accessible thereafter. Patients were confined in the chamber calorimeter from 19:00 h on day 2 until 09:00 h on day 4, and then from 19:00 h on day 4 to 09:00 h on day 6. The order in which each meal pattern was offered was balanced over time.

Measurements: Energy expenditure (chamber calorimetry), spontaneous activity (video) and energy intake (where additional foods were available) during the final 24 h of each dietary component.

Subjects: Ten (6vs2), eight (6+vs2+) and eight (6+vsAMFAST) women were recruited who had a BMI of greater than 25 kg/m2.

Results: From experiment 6vs2 the difference between energy expenditure with six meals (10.00 MJ) and two meals (9.96 MJ) was not significant (P=0.88). Energy expenditure between 23:00 h and 08:00 h ('night') was, however, significantly higher (P=0.02) with two meals (9.12 MJ/24 h) compared with six meals (8.34 MJ/24 h). The pattern of spontaneous physical activity did not differ significantly between these two meal patterns (P>0.05). Total energy intake was affected by neither meal frequency in experiment 6+vs2+ (10.75 MJ with six, 11.08 MJ with two; P=0.58) nor a morning fast in experiment 6+vsAMFAST (8.55 MJ/24 h with six, 7.60 MJ with AMFAST; P=0.40). The total diet of subjects who had a morning fast tended to have a lower percentage of total energy from carbohydrate (40%) than when they had six meals per 24 h (49%) (P=0.05). Subsequent energy balance was affected by neither meal frequency (6vs2; P=0.88, 6+vs2+; P=0.50) nor a morning fast (P=0.18).

Conclusions: In the short term, meal frequency and a period of fasting have no major impact on energy intake or expenditure but energy expenditure is delayed with a lower meal frequency compared with a higher meal frequency. This might be attributed to the thermogenic effect of food continuing into the night when a later, larger meal is given. A morning fast resulted in a diet which tended to have a lower percentage of energy from carbohydrate than with no fast.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Calorimetry
  • Eating*
  • Energy Intake
  • Energy Metabolism*
  • Exercise
  • Fasting
  • Feeding Behavior*
  • Female
  • Humans
  • Middle Aged
  • Obesity / metabolism*