For over 25 years, personal assistant robots for severely disabled individuals have been in development. More recently, using robots to deliver rehabilitation therapy has been proposed. This paper summarizes the development and clinical testing of three mechatronic systems for post-stroke therapy conducted at the VA Palo Alto in collaboration with Stanford University. We describe the philosophy and experiences that guided their evolution. Unique to the Palo Alto approach is provision for bimanual, mirror-image, patient-controlled therapeutic exercise. Proof-of-concept was established with a 2-degree-of-freedom (DOF) elbow/forearm manipulator. Tests of a second-generation therapy robot producing planar forearm movements in 19 hemiplegic and control subjects confirmed the validity and reliability of interaction forces during mechanically assisted upper-limb movements. Clinical trials comparing 3-D robot-assisted therapy to traditional therapy in 21 chronic stroke subjects showed significant improvement in the Fugl-Meyer (FM) measure of motor recovery in the robot group, which exceeded improvements in the control group.