Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs

J Anim Sci. 2001 Apr;79(4):942-8. doi: 10.2527/2001.794942x.

Abstract

This experiment evaluated the effect of high dietary Se levels using organic or inorganic Se on the selenosis responses in growing-finishing swine. A 2 x 4 factorial arrangement of treatments in a randomized complete block design was conducted in two replicates. Sodium selenite or Se-enriched yeast was added at 5, 10, 15, or 20 ppm Se to corn-soybean meal diets. A basal diet without added Se was a ninth treatment group. Ninety crossbred barrows initially averaging 24.7 kg BW were allotted at five pigs per pen. Pigs were bled at 3-wk intervals and plasma Se, glutathione peroxidase (GSH-Px) activity, glutamic oxalacetic transaminase (PGOT), hemoglobin, packed cell volume, and blood cell Se concentration were measured. After 12 wk, pigs were killed and various tissues and bile were collected for Se analyses. Pig body weights, daily gains, and feed intakes were similar for both Se sources when provided at < or = 5 ppm Se, but each measurement declined in a different manner for each Se source as the dietary Se level increased. The decline was more rapid when the inorganic rather than organic Se source was fed, resulting in interaction responses (P < 0.01). Hair loss (alopecia) and separation of the hoof at the coronary band site occurred at > or = 10 ppm inorganic Se but at > or = 15 ppm organic Se level. Plasma GSH-Px activity increased (P < 0.01) when high dietary Se levels of either Se source was fed. Plasma and blood cell Se increased at each period as dietary Se level increased (P < 0.01) and was greater when organic Se was provided (P < 0.05). Blood cell Se concentration reached a plateau when inorganic Se, but not when organic Se, was fed and increased as the experiment progressed. This resulted in a three-way interaction (P < 0.01). Plasma GOT activity at the 12-wk period was elevated when inorganic Se was provided at > or = 15 ppm Se but not when organic Se was fed, resulting in an interaction (P < 0.05). Tissue Se concentrations increased as dietary Se level increased and when organic Se was provided, resulting in interaction responses (P < 0.05). Bile was a yellow color when the basal diet was fed but was dark brown at > 10 ppm inorganic Se and at 20 ppm when organic Se was provided. Bile Se increased as dietary Se level increased (P < 0.01). These results suggest that dietary Se from inorganic or organic sources was toxic at > or = 5 ppm Se, but subsequent selenosis effects were more severe and occurred sooner when sodium selenite was the Se source.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alopecia / chemically induced
  • Animals
  • Aspartate Aminotransferases / blood
  • Body Weight
  • Diet / veterinary*
  • Dietary Supplements
  • Energy Intake
  • Erythrocyte Volume / veterinary
  • Glutathione Peroxidase / blood
  • Hemoglobins / analysis
  • Hoof and Claw / drug effects
  • Male
  • Random Allocation
  • Selenium / toxicity*
  • Selenomethionine / toxicity
  • Swine / blood
  • Swine / growth & development*

Substances

  • Hemoglobins
  • Selenomethionine
  • Glutathione Peroxidase
  • Aspartate Aminotransferases
  • Selenium