Structures and proton-pumping strategies of mitochondrial respiratory enzymes
- PMID: 11340051
- DOI: 10.1146/annurev.biophys.30.1.23
Structures and proton-pumping strategies of mitochondrial respiratory enzymes
Abstract
Enzymes of the mitochondrial respiratory chain serve as proton pumps, using the energy made available from electron transfer reactions to transport protons across the inner mitochondrial membrane and create an electrochemical gradient used for the production of ATP. The ATP synthase enzyme is reversible and can also serve as a proton pump by coupling ATP hydrolysis to proton translocation. Each of the respiratory enzymes uses a different strategy for performing proton pumping. In this work, the strategies are described and the structural bases for the action of these proteins are discussed in light of recent crystal structures of several respiratory enzymes. The mechanisms and efficiency of proton translocation are also analyzed in terms of the thermodynamics of the substrate transformations catalyzed by these enzymes.
Similar articles
-
Oxidative phosphorylation at the fin de siècle.Science. 1999 Mar 5;283(5407):1488-93. doi: 10.1126/science.283.5407.1488. Science. 1999. PMID: 10066163 Review.
-
Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.Curr Opin Struct Biol. 2013 Aug;23(4):526-38. doi: 10.1016/j.sbi.2013.06.013. Epub 2013 Jul 16. Curr Opin Struct Biol. 2013. PMID: 23867107 Review.
-
Thermal inactivation of electron-transport functions and F0F1-ATPase activities.Biochim Biophys Acta. 1987 Oct 29;894(1):16-28. doi: 10.1016/0005-2728(87)90208-8. Biochim Biophys Acta. 1987. PMID: 2889470
-
Fungal respiration: a fusion of standard and alternative components.Biochim Biophys Acta. 2001 Apr 2;1504(2-3):179-95. doi: 10.1016/s0005-2728(00)00251-6. Biochim Biophys Acta. 2001. PMID: 11245784 Review.
-
Cooperativity and flexibility of the protonmotive activity of mitochondrial respiratory chain.Biochim Biophys Acta. 2006 May-Jun;1757(5-6):428-36. doi: 10.1016/j.bbabio.2006.03.015. Epub 2006 Apr 17. Biochim Biophys Acta. 2006. PMID: 16730640 Review.
Cited by
-
Approaching Optimal pH Enzyme Prediction with Large Language Models.ACS Synth Biol. 2024 Sep 20;13(9):3013-3021. doi: 10.1021/acssynbio.4c00465. Epub 2024 Aug 28. ACS Synth Biol. 2024. PMID: 39197156 Free PMC article.
-
Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria.Bone. 2024 Aug;185:117112. doi: 10.1016/j.bone.2024.117112. Epub 2024 May 1. Bone. 2024. PMID: 38697384 Review.
-
Sirtuins and Metabolism Biomarkers in Relapsing-Remitting and Secondary Progressive Multiple Sclerosis: a Correlation Study with Clinical Outcomes and Cognitive Impairments.Mol Neurobiol. 2024 Jun;61(6):3442-3460. doi: 10.1007/s12035-023-03778-x. Epub 2023 Nov 23. Mol Neurobiol. 2024. PMID: 37995076
-
IQGAP1 mediates the communication between the nucleus and the mitochondria via NDUFS4 alternative splicing.NAR Cancer. 2023 Aug 24;5(3):zcad046. doi: 10.1093/narcan/zcad046. eCollection 2023 Sep. NAR Cancer. 2023. PMID: 37636315 Free PMC article.
-
Genetics of enzymatic dysfunctions in metabolic disorders and cancer.Front Oncol. 2023 Aug 2;13:1230934. doi: 10.3389/fonc.2023.1230934. eCollection 2023. Front Oncol. 2023. PMID: 37601653 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
