Two-component diffusion tensor MRI of isolated perfused hearts

Magn Reson Med. 2001 Jun;45(6):1039-45. doi: 10.1002/mrm.1138.

Abstract

Nonmonoexponential MR diffusion decay behavior has been observed at high diffusion-weighting strengths for cell aggregates and tissues, including the myocardium; however, implications for myocardial MR diffusion tensor imaging are largely unknown. In this study, a slow-exchange-limit, two-component diffusion tensor model was fitted to diffusion-weighted images obtained in isolated, perfused rat hearts. Results indicate that there are at least two distinct components of anisotropic diffusion, characterized by a "fast" component whose principal diffusivity is comparable to that of the perfusate, and a highly anisotropic "slow" component. It is speculated that the two components correspond to tissue compartments and have a general agreement with the orientations of anisotropy, or fiber orientations, in the myocardium. Moreover, consideration of previous studies of myocardial diffusion suggests that the presently observed fast component may likely be dominated by diffusion in the vascular space, whereas the slow component may include the intracellular and interstitial compartments. The implications of the results for myocardial fiber orientation mapping and limitations of the current two-component model used are also discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Anisotropy
  • Diffusion
  • Image Enhancement*
  • Image Processing, Computer-Assisted*
  • Magnetic Resonance Imaging*
  • Male
  • Myocardium / pathology*
  • Rats
  • Rats, Sprague-Dawley