Magn Reson Med. 2001 Jun;45(6):1066-74. doi: 10.1002/mrm.1141.


Recently a self-calibrating SMASH technique, AUTO-SMASH, was described. This technique is based on PPA with RF coil arrays using auto-calibration signals. In AUTO-SMASH, important coil sensitivity information required for successful SMASH reconstruction is obtained during the actual scan using the correlation between undersampled SMASH signal data and additionally sampled calibration signals with appropriate offsets in k-space. However, AUTO-SMASH is susceptible to noise in the acquired data and to imperfect spatial harmonic generation in the underlying coil array. In this work, a new modified type of internal sensitivity calibration, VD-AUTO-SMASH, is proposed. This method uses a VD k-space sampling approach and shows the ability to improve the image quality without significantly increasing the total scan time. This new k-space adapted calibration approach is based on a k-space-dependent density function. In this scheme, fully sampled low-spatial frequency data are acquired up to a given cutoff-spatial frequency. Above this frequency, only sparse SMASH-type sampling is performed. On top of the VD approach, advanced fitting routines, which allow an improved extraction of coil-weighting factors in the presence of noise, are proposed. It is shown in simulations and in vivo cardiac images that the VD approach significantly increases the potential and flexibility of rapid imaging with AUTO-SMASH.

MeSH terms

  • Artifacts
  • Computer Simulation
  • Heart / anatomy & histology*
  • Humans
  • Image Enhancement*
  • Image Processing, Computer-Assisted*
  • Magnetic Resonance Imaging / methods*
  • Myocardial Contraction / physiology
  • Sensitivity and Specificity