Closed microwave digestion and a high-pressure asher have been evaluated for wet-oxidation and extraction of lead, cadmium, chromium, and mercury from a range of typical packaging materials used for food products. For the high-pressure asher a combination of nitric and sulfuric acids was efficient for destruction of a range of packaging materials; for polystyrene, however, nitric acid alone was more efficient. For microwave digestion, a reagent containing nitric acid, sulfuric acid, and hydrogen peroxide was used for all materials except polystyrene. Use of the high-pressure asher resulted in the highest recoveries of spiked lead (median 92%), cadmium (median 92%), chromium (median 97%), and mercury (median 83%). All samples were spiked before digestion with 40 microg L(-1) Cd, Cr, and Pb and 8 microg L(-1) Hg in solution. The use of indium as internal standard improved the accuracy of results from both ICP-MS and ICP-AES. Average recovery of the four elements from spiked packaging materials was 92 +/- 14% by ICP-MS and 87 +/- 15% (except for mercury) by ICP-AES. For mercury analysis by CVAAS, use of tin(II) chloride as reducing agent resulted in considerably better accuracy than use of sodium borohydride reagent.