DNA primases are enzymes whose continual activity is required at the DNA replication fork. They catalyze the synthesis of short RNA molecules used as primers for DNA polymerases. Primers are synthesized from ribonucleoside triphosphates and are four to fifteen nucleotides long. Most DNA primases can be divided into two classes. The first class contains bacterial and bacteriophage enzymes found associated with replicative DNA helicases. These prokaryotic primases contain three distinct domains: an amino terminal domain with a zinc ribbon motif involved in binding template DNA, a middle RNA polymerase domain, and a carboxyl-terminal region that either is itself a DNA helicase or interacts with a DNA helicase. The second major primase class comprises heterodimeric eukaryotic primases that form a complex with DNA polymerase alpha and its accessory B subunit. The small eukaryotic primase subunit contains the active site for RNA synthesis, and its activity correlates with DNA replication during the cell cycle.