Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors
- PMID: 11395760
- DOI: 10.1038/35079500
Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors
Abstract
Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.
Comment in
-
Fifty years of inactivation.Nature. 2001 Jun 7;411(6838):643-4. doi: 10.1038/35079705. Nature. 2001. PMID: 11395746 No abstract available.
Similar articles
-
Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel.Nature. 1991 Sep 5;353(6339):86-90. doi: 10.1038/353086a0. Nature. 1991. PMID: 1881453
-
Molecular determinants of gating at the potassium-channel selectivity filter.Nat Struct Mol Biol. 2006 Apr;13(4):311-8. doi: 10.1038/nsmb1069. Epub 2006 Mar 12. Nat Struct Mol Biol. 2006. PMID: 16532009
-
Conserved gating hinge in ligand- and voltage-dependent K+ channels.Biochemistry. 2004 Oct 26;43(42):13242-7. doi: 10.1021/bi048377v. Biochemistry. 2004. PMID: 15491131
-
Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations.J Struct Biol. 1998;121(2):263-84. doi: 10.1006/jsbi.1998.3962. J Struct Biol. 1998. PMID: 9615442 Review.
-
Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels.Physiology (Bethesda). 2008 Feb;23:49-57. doi: 10.1152/physiol.00031.2007. Physiology (Bethesda). 2008. PMID: 18268365 Review.
Cited by
-
Pharmacology of A-Type K+ Channels.Handb Exp Pharmacol. 2021;267:167-183. doi: 10.1007/164_2021_456. Handb Exp Pharmacol. 2021. PMID: 33907894
-
Characterization of conformational heterogeneity via higher-dimensionality, proton-detected solid-state NMR.J Biomol NMR. 2022 Dec;76(5-6):197-212. doi: 10.1007/s10858-022-00405-0. Epub 2022 Sep 23. J Biomol NMR. 2022. PMID: 36149571 Free PMC article.
-
Coupling stabilizers open KV1-type potassium channels.Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):27016-27021. doi: 10.1073/pnas.2007965117. Epub 2020 Oct 13. Proc Natl Acad Sci U S A. 2020. PMID: 33051293 Free PMC article.
-
Structural insights into neuronal K+ channel-calmodulin complexes.Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13579-83. doi: 10.1073/pnas.1207606109. Epub 2012 Aug 6. Proc Natl Acad Sci U S A. 2012. PMID: 22869708 Free PMC article.
-
Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2).Sci Rep. 2013;3:1666. doi: 10.1038/srep01666. Sci Rep. 2013. PMID: 23588888 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
