An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars

Nature. 2001 Jun 7;411(6838):662-5. doi: 10.1038/35079508.

Abstract

The study of astronomical objects using electromagnetic radiation involves four basic observational approaches: imaging, spectroscopy, photometry (accurate counting of the photons received) and polarimetry (measurement of the polarizations of the observed photons). In contrast to observations at other wavelengths, a lack of sensitivity has prevented X-ray astronomy from making use of polarimetry. Yet such a technique could provide a direct picture of the state of matter in extreme magnetic and gravitational fields, and has the potential to resolve the internal structures of compact sources that would otherwise remain inaccessible, even to X-ray interferometry. In binary pulsars, for example, we could directly 'see' the rotation of the magnetic field and determine if the emission is in the form of a 'fan' or a 'pencil' beam. Also, observation of the characteristic twisting of the polarization angle in other compact sources would reveal the presence of a black hole. Here we report the development of an instrument that makes X-ray polarimetry possible. The factor of 100 improvement in sensitivity that we have achieved will allow direct exploration of the most dramatic objects of the X-ray sky.