Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr 6;282(3):671-7.
doi: 10.1006/bbrc.2001.4637.

Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells

Affiliations

Aspirin inhibits matrix metalloproteinase-2 activity, increases E-cadherin production, and inhibits in vitro invasion of tumor cells

M C Jiang et al. Biochem Biophys Res Commun. .

Abstract

Aspirin (acetylsalicylic acid) is a widely used anti-inflammatory drug. Recently, aspirin was shown to reduce the risk of development of cancer and mortality from it. Tumor metastasis is the most important cause of cancer death. The aim of the present study was to investigate if aspirin affects the invasion of cancer cells. Matrix metalloproteinases (MMPs) and cell adhesion molecules play important roles in the modulation of tumor invasion. Gelatin-based zymography assay showed that aspirin inhibited MMP-2 activity of SK-Hep-1 cancer cells. Matrigel-based chemoinvasion assay showed that aspirin inhibited in vitro invasion of SK-Hep-1 cancer cells. Aspirin treatment also increased the production of the cell adhesion molecule, E-cadherin, in Hep G2 cancer cells. Aspirin is a cyclooxygenase (COX) inhibitor. Treatment of cells with another COX inhibitor, sulindac, also inhibited MMP-2 activity and increased E-cadherin production of cells. These results indicate that aspirin can modulate both MMP-2 and E-cadherin production and therein may possess antimetastatic effect.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources