Effects of eccentric exercise on trunk extensor torque and lumbar paraspinal EMG

Med Sci Sports Exerc. 2001 Jun;33(6):971-7. doi: 10.1097/00005768-200106000-00017.

Abstract

Purpose: Little is known about the effects of eccentric contractions on the function of the lumbar paraspinal muscles. The purpose of this study was to determine the effects of a single bout of eccentric contractions using the trunk extensor muscles on torque and lumbar paraspinal electromyographic (EMG) parameters.

Methods: Twenty healthy men between the ages of 18 and 49 yr participated in the study. Subjects performed a single bout of 50 maximal voluntary concentric (N = 10) or eccentric (N = 10) trunk extension movements while surface EMG signals were recorded from the multifidus and iliocostalis lumborum muscles. A series of isometric contractions were performed both before the exercise protocol and at five additional time points over the following 7 d.

Results: During the exercise protocol, peak torque decreased 30% and 24% in the eccentric and concentric groups, respectively, whereas no change occurred in EMG root-mean-square (RMS). There were no group differences in peak torque generation at any of the postexercise protocol time points. Compared with the preexercise protocol values, multifidus EMG was elevated 27% immediately post and 15 min post in the eccentric group. Similarly, compared with the concentric group, multifidus EMG in the eccentric group was increased 34%, 40%, and 25% immediately post, 15 min post, and 1 d after the exercise protocol, respectively.

Conclusion: Eccentric contractions using the trunk extensor muscles result in higher levels of multifidus EMG activity to produce a given level of torque. This reduction in neuromuscular efficiency persisted for one day with recovery to baseline levels by the third day. Contrary to studies using other muscle groups, no sustained alteration in muscle function was observed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Biomechanical Phenomena
  • Electromyography
  • Exercise*
  • Humans
  • Lumbosacral Region / physiology
  • Male
  • Middle Aged
  • Muscle Contraction / physiology*
  • Muscle Fatigue
  • Muscle, Skeletal / physiology*
  • Torque