Animal study on surface-modified defibrillator systems: Indications for enhanced infection resistance

J Biomed Mater Res. 2001;58(4):384-92. doi: 10.1002/jbm.1032.


One of the most important problems with ICD systems is infection. The aim of this study was an in vivo evaluation of the efficacy of defibrillator systems in terms of infection resistance. The polyurethane leads were coupled with heparin and loaded with the antibiotic gentamicin, while the PGs were modified to release gentamicin. Group I was comprised of 10 pigs implanted with either a standard or a modified system for 2 weeks; group II was implanted during 4 weeks. The lead was inserted into the heart wall via the jugular vein. The other end was subcutaneously tunneled to the armpit where the PG was positioned. A cocktail of Staphylococcus aureus and epidermidis was injected at the site of the PG. Evaluation was performed macroscopically, by taking bacterial swabs during explantation and by microscopic processing. The results showed that 3 out of 5 modified defibrillator-systems in group I and 1-2 out of 5 in group II were judged as noninfected, whereas all standard systems were infected. Infection rates of the remaining modified defibrillators showed variances, as found with the standards, from slight to moderate to high, to even high/severe in group II (1x standard and 1x modified). With the modified systems, this may be related to production of humoral factors by an intensified early tissue reaction, as indicated by a swelling at day 6 at the site of the PG. When infected, whether or not modified, usually only Staphylococcus aureus was present. Spreading of infection seemed to occur by inoculation via blood, for example, based on the observation that group II in general showed an increase in infected fibrotic overgrowth in the heart, while infectious problems were low in the jugular vein. It is concluded that the modification at short term shows enhanced infection resistance. An increased infection rate already at 4 weeks, however, indicates that the modification may not hold in the long run. Special attention is needed concerning the more intense early tissue reaction.

MeSH terms

  • Animals
  • Anti-Infective Agents
  • Biocompatible Materials*
  • Defibrillators, Implantable*
  • Surface Properties
  • Swine


  • Anti-Infective Agents
  • Biocompatible Materials