Structural and functional characterization of second-coordination sphere mutants of soybean lipoxygenase-1

Biochemistry. 2001 Jun 26;40(25):7509-17. doi: 10.1021/bi002893d.

Abstract

Lipoxygenases are an important class of non-heme iron enzymes that catalyze the hydroperoxidation of unsaturated fatty acids. The details of the enzymatic mechanism of lipoxygenases are still not well understood. This study utilizes a combination of kinetic and structural probes to relate the lipoxygenase mechanism of action with structural modifications of the iron's second coordination sphere. The second coordination sphere consists of Gln(495) and Gln(697), which form a hydrogen bond network between the substrate cavity and the first coordination sphere (Asn(694)). In this investigation, we compared the kinetic and structural properties of four mutants (Q495E, Q495A, Q697N, and Q697E) with those of wild-type soybean lipoxygenase-1 and determined that changes in the second coordination sphere affected the enzymatic activity by hydrogen bond rearrangement and substrate positioning through interaction with Gln(495). The nature of the C-H bond cleavage event remained unchanged, which demonstrates that the mutations have not affected the mechanism of hydrogen atom tunneling. The unusual and dramatic inverse solvent isotope effect (SIE) observed for the Q697E mutant indicated that an Fe(III)-OH(-) is the active site base. A new transition state model for hydrogen atom abstraction is proposed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Substitution / genetics
  • Binding, Competitive / genetics
  • Circular Dichroism
  • Crystallography, X-Ray
  • Deuterium Oxide / metabolism
  • Electron Spin Resonance Spectroscopy
  • Glutamine / chemistry
  • Glutamine / genetics
  • Glycine max / enzymology*
  • Glycine max / genetics
  • Kinetics
  • Lipoxygenase / chemistry*
  • Lipoxygenase / genetics*
  • Lipoxygenase / metabolism
  • Mutagenesis, Site-Directed*
  • Nonheme Iron Proteins / chemistry*
  • Nonheme Iron Proteins / genetics*
  • Nonheme Iron Proteins / metabolism
  • Oxidation-Reduction
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Solvents
  • Spectrophotometry, Ultraviolet
  • Structure-Activity Relationship
  • Substrate Specificity / genetics
  • Viscosity

Substances

  • Nonheme Iron Proteins
  • Recombinant Proteins
  • Solvents
  • Glutamine
  • Lipoxygenase
  • Deuterium Oxide