Sexual conflict selects for male and female reproductive characters

Curr Biol. 2001 Apr 3;11(7):489-93. doi: 10.1016/s0960-9822(01)00146-4.

Abstract

Background: Strict genetic monogamy leads to sexual harmony because any trait that decreases the fitness of one sex also decreases the fitness of the other. Any deviation from monogamy increases the potential for sexual conflict. Conflict is further enhanced by sperm competition, and given the ubiquity of this phenomenon, sexual conflict is rife. In support of theory, experimentally enforced monogamy leads to the evolution of sexual benevolence. In contrast, with multiple mating, males evolve traits causing massive female fitness reductions when female evolution is restrained. Theory also predicts increased investment in spermatogenesis when sperm competition risk is high. While this supposition has correlational support, cause and effect has yet to be firmly established.

Results: By enforcing monogamy or polyandry in yellow-dung-fly lines, we have shown experimentally that males from polyandrous treatments evolved larger testes. Furthermore, females from this treatment evolved larger accessory sex glands. These glands produce a spermicidal secretion, so larger glands could increase female ability to influence paternity. Using molecular techniques, we have shown that, consistent with this idea, males' success as second mates is reduced in females from the polyandrous treatment. Nevertheless, males from polyandrous lines achieve higher paternity during sperm competition, and this finding further supports the testis evolution patterns.

Conclusions: These results provide direct experimental support for macroevolutionary patterns of testis size evolution. Furthermore, we have shown that sperm competition selects for traits likely to be important in sexual conflicts over paternity, a result only previously demonstrated in Drosophila melanogaster.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution*
  • Female
  • Genitalia, Female / growth & development
  • Genitalia, Female / physiology
  • Genitalia, Male / growth & development
  • Genitalia, Male / physiology
  • Male
  • Muscidae / anatomy & histology
  • Muscidae / physiology*
  • Reproduction / physiology
  • Selection, Genetic
  • Sex Characteristics*
  • Sex Factors
  • Sexual Behavior, Animal*
  • Spermatozoa / physiology*