The neuropeptide arginine vasotocin (AVT; non-mammals) and its mammalian homologue, arginine vasopressin (AVP) influence a variety of sex-typical and species-specific behaviors, and provide an integrational neural substrate for the dynamic modulation of those behaviors by endocrine and sensory stimuli. Although AVT/AVP behavioral functions and related anatomical features are increasingly well-known for individual species, ubiquitous species-specificity presents ever increasing challenges for identifying consistent structure-function patterns that are broadly meaningful. Towards this end, we provide a comprehensive review of the available literature on social behavior functions of AVT/AVP and related anatomical characteristics, inclusive of seasonal plasticity, sexual dimorphism, and steroid sensitivity. Based on this foundation, we then advance three major questions which are fundamental to a broad conceptualization of AVT/AVP social behavior functions: (1) Are there sufficient data to suggest that certain peptide functions or anatomical characteristics (neuron, fiber, and receptor distributions) are conserved across the vertebrate classes? (2) Are independently-evolved but similar behavior patterns (e.g. similar social structures) supported by convergent modifications of neuropeptide mechanisms, and if so, what mechanisms? (3) How does AVT/AVP influence behavior - by modulation of sensorimotor processes, motivational processes, or both? Hypotheses based upon these questions, rather than those based on individual organisms, should generate comparative data that will foster cross-class comparisons which are at present underrepresented in the available literature.