Individual differences in response to regular physical activity

Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S446-51; discussion S452-3. doi: 10.1097/00005768-200106001-00013.

Abstract

Purpose: The purpose of this review was to address the question of interindividual variation in responsiveness to regular exercise training and to define the contributions of age, sex, race, and pretraining phenotype level to this variability.

Methods: A literature review was conducted of the studies reporting interindividual variation in responsiveness to standardized and controlled exercise-training programs, and included an analysis of the contribution of age, sex, race, and initial phenotype values to the heterogeneity in VO(2max), high-density lipoprotein (HDL)-C and submaximal exercise, heart rate (HR), and systolic blood pressure (SBP) training responses in subjects from the HERITAGE Family Study.

Results: Several studies have shown marked individual differences in responsiveness to exercise training. For example, VO(2max) responses to standardized training programs have ranged from almost no gain up to 100% increase in large groups of sedentary individuals. A similar pattern of heterogeneity has been observed for other phenotypes. Data from the HERITAGE Family Study show that age, sex, and race have little impact on interindividual differences in training responses. On the other hand, the initial level of a phenotype is a major determinant of training response for some traits, such as submaximal exercise heart rate and blood pressure (BP) but has only a minor effect on others (e.g., VO(2max), HDL-C). The contribution of familial factors (shared environment and genetic factors) is supported by data on significant familial aggregation of training response phenotypes.

Conclusions: There is strong evidence for considerable heterogeneity in the responsiveness to regular physical activity. Age, sex, and ethnic origin are not major determinants of human responses to regular physical activity, whereas the pretraining level of a phenotype has a considerable impact in some cases. Familial factors also contribute significantly to variability in training response.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Ethnic Groups
  • Exercise*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Oxygen Consumption*
  • Pedigree
  • Phenotype
  • Physical Fitness / physiology*
  • Reproducibility of Results
  • Sex Factors