Sodium influx during action potential in innervated and denervated rat skeletal muscles

Muscle Nerve. 2001 Aug;24(8):1026-33. doi: 10.1002/mus.1106.

Abstract

Resting Na(+) influx (J(i)(Na)) was measured in innervated and denervated (1-6 days) rat extensor digitorum longus muscle in the absence and presence of 2 micromol/L tetrodotoxin (TTX). The mean value of Na(+) permeability (P(Na)) in innervated muscles was 49.6 +/- 2.6 pm.s(-1). At the second day postdenervation, it decreased by about 45%. This was followed, between the second and fourth days, by a sharp rise, which by the sixth day reached a steady value approximately 2.5 times greater than that of innervated muscles. This, most likely, generated the 30% increase in internal [Na(+)] concentration ([Na(+)](I)) observed at this time. Tetrodotoxin reduced P(Na) of both innervated and denervated muscles by about 25%. In 6-day denervated muscles, virtually all the TTX effect on P(Na) represents the blockage of TTX-resistant Na(+) channels. Denervation produced a depolarization of about 20 mV by the sixth day. The extra J(i)(Na) per action potential (AP) decreased monotonically with time after denervation from 20.0 +/- 3.8 in innervated to 11.1 +/- 1.0 nmol.g(-1).AP(-1) in 6-day denervated muscles. The overshoot of the AP decreased from 15 +/- 1 in innervated to 7 +/- 1 mV in 6-day denervated muscles. Likewise, the maximum rate of rise (+dV/dt), an expression of the inward Na(+) current, fell from 305 +/- 14 in innervated to 188 +/- 18 V.s(-1) in 6-day denervated muscles. The estimated 6-day denervated/innervated ratio of peak Na(+) conductance (g(Na)) was 0.67. The changes in AP parameters promoted by denervation were substantially reduced when both innervated and denervated fibers were hyperpolarized to -90 mV. These results suggest that the depolarization, mainly due to the increase in P(Na) /P(K) ratio, increases Na(+) inactivation and consequently reduces peak g(Na), in spite of the absolute increment in resting TTX-sensitive P(Na). This, in addition to the moderate reduction in the inward driving force on Na(+), decreases the inward Na(+) current and the extra J(i)(Na) per AP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology*
  • Animals
  • Electric Stimulation
  • In Vitro Techniques
  • Muscle Denervation
  • Muscle Fibers, Skeletal / drug effects
  • Muscle Fibers, Skeletal / physiology
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / innervation*
  • Muscle, Skeletal / metabolism*
  • Rats
  • Rats, Wistar
  • Sodium / metabolism*
  • Tetrodotoxin / pharmacology

Substances

  • Tetrodotoxin
  • Sodium