Ssy1p and Ptr3p are components of the yeast plasma membrane SPS amino acid sensor. In response to extracellular amino acids this sensor initiates metabolic signals that ultimately regulate the functional expression of several amino acid-metabolizing enzymes and amino acid permeases (AAPs). As a result of diminished leucine uptake capabilities, ssy1Delta leu2 and ptr3Delta leu2 mutant strains are unable to grow on synthetic complete medium (SC). Genes affecting the functional expression of AAPs were identified by selecting spontaneous suppressing mutations in amino acid sensor-independent (ASI) genes that restore growth on SC. The suppressors define 11 recessive (asi) complementation groups and 5 dominant (ASI) linkage groups. Strains with mutations in genes assigned to these 16 groups fall into two phenotypic classes. Mutations in the class I genes (ASI1, ASI2, ASI3, TUP1, SSN6, ASI13) derepress the transcription of AAP genes. ASI1, ASI2, and ASI3 encode novel membrane proteins, and Asi1p and Asi3p are homologous proteins that have conserved ubiquitin ligase-like RING domains at their extreme C termini. Several of the class II genes (DOA4, UBA1, BRO1, BUL1, RSP5, VPS20, VPS36) encode proteins implicated in controlling aspects of post-Golgi endosomal-vacuolar protein sorting. The results from genetic and phenotypic analysis indicate that SPS sensor-initiated signals function positively to facilitate amino acid uptake and that two independent ubiquitin-mediated processes negatively modulate amino acid uptake.