Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Aug 1;167(3):1644-53.
doi: 10.4049/jimmunol.167.3.1644.

Evidence of IL-18 as a Novel Angiogenic Mediator

Free article
Comparative Study

Evidence of IL-18 as a Novel Angiogenic Mediator

C C Park et al. J Immunol. .
Free article


Angiogenesis, or new blood vessel growth, is a key process in the development of synovial inflammation in rheumatoid arthritis (RA). Integral to this pathologic proliferation are proinflammatory cytokines. We hypothesized a role for IL-18 as an angiogenic mediator in RA. We examined the effect of human IL-18 on human microvascular endothelial cell (HMVEC) migration. IL-18 induced HMVEC migration at 1 nM (p < 0.05). RA synovial fluids potently induced endothelial cell migration, but IL-18 immunodepletion resulted in a 68 +/- 5% decrease in HMVEC migration (p < 0.05). IL-18 appears to act on HMVECs via alpha(v)beta(3) integrin. To test whether IL-18 induced endothelial cell tube formation in vitro, we quantitated the degree of tube formation on Matrigel matrix. IL-18, 1 or 10 nM, resulted in a 77% or 87% increase in tube formation compared with control (p < 0.05). To determine whether IL-18 may be angiogenic in vivo, we implanted IL-18 in Matrigel plugs in mice, and IL-18 at 1 and 10 nM induced angiogenesis (p < 0.05). The angiogenesis observed appears to be independent of the contribution of local TNF-alpha, as evidenced by adding neutralizing anti-TNF-alpha Ab to the Matrigel plugs. In an alternative in vivo model, sponges embedded with IL-18 or control were implanted into mice. IL-18 (10 nM) induced a 4-fold increase in angiogenesis vs the control (p < 0.05). These findings support a novel function for IL-18 as an angiogenic factor in RA and may elucidate a potential therapeutic target for angiogenesis-directed diseases.

Similar articles

See all similar articles

Cited by 78 articles

See all "Cited by" articles

Publication types

MeSH terms

LinkOut - more resources