Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul 31;40(30):8808-14.
doi: 10.1021/bi0025161.

Ca2+ binding site 2 in calcineurin-B modulates calmodulin-dependent calcineurin phosphatase activity

Affiliations

Ca2+ binding site 2 in calcineurin-B modulates calmodulin-dependent calcineurin phosphatase activity

B Feng et al. Biochemistry. .

Abstract

Calcineurin is the Ca(2+)- and calmodulin-dependent Ser/Thr phosphatase. Human calcineurin-Aalpha and wild-type or mutated calcineurin-Bs were coexpressed in Escherichia coli and purified by calmodulin-Sepharose affinity chromatography. Four calcineurin-B mutants were studied. Each had a single conserved Glu in the 12th position of one EF-hand Ca(2+) binding site replaced by a Lys, resulting in the loss of Ca(2+) binding to that site. Phosphatase activities of the enzymes toward a (32)P-labeled phosphopeptide substrate were measured. Inactivating Ca(2+) binding sites 1, 2, or 3 in calcineurin-B reduced Ca(2+)-dependent phosphatase activity of the enzymes in the absence of calmodulin with the site 2 mutation being most effective. Inactivating Ca(2+) binding site 4 did not change enzyme activity or sensitivity to Ca(2+) in either the absence or presence of calmodulin. The calmodulin-dependent phosphatase activity of the enzymes containing site 1, 2, or 3 mutations in calcineurin-B was also decreased compared to enzyme with wild-type calcineurin-B. Of these enzymes, the one with the site 2 mutation was most profoundly affected as determined by the magnitude of the shift in Ca(2+) concentration dependence. Binding of a fluorescein-labeled calmodulin to the wild-type and the site 2 mutant enzymes was examined using fluorescence polarization measurements. The decrease in Ca(2+) sensitivity for the enzyme with calcineurin-B site 2 inactivated is apparently due to a decrease in the affinity of that enzyme for calmodulin at low Ca(2+) concentrations. These data support a role for Ca(2+) binding site 3 in the carboxyl half of calcineurin-B in transmitting the Ca(2+) signal to calcineurin-A and indicate that site 2 in the amino half of calcineurin-B is critical for enzyme activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources