We used the formalin test to clarify the 5-hydroxytryptamine (5-HT) receptor subtypes involved in the modulation of spinal nociceptive transmission in rats. Intrathecal administration of a 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetraline (8-OH-DPAT; 1, 10, and 30 microg), or a 5-HT1B receptor agonist, 1, 4-dihydro-3-(1, 2, 3, 6-tetrahydro-4-pyridinyl)-5H-pyrrol (3, 2-b) pyridin-5-one (CP 93129; 1 and 10 microg), produced no significant change in the number of flinches. A 5-HT(2) receptor agonist, (+/-)-2, 5-dimethoxy-4-iodoamphetamine (DOI; 10, 30, and 100 microg), and a 5-HT3 receptor agonist, 2-methyl-5-HT (100 and 300 microg), produced dose-dependent decreases in the number of flinches in phases 1 (1 to 6 min) and 2 (10 to 61 min) of the test. The antinociceptive effects of DOI and 2-methyl-5-HT were antagonized by intrathecal pretreatment with a 5-HT2 receptor antagonist, ketanserin, and a 5-HT3 receptor antagonist, 3-tropanyl-3, 5-dichlorobenzoate (MDL-72222), respectively. These results suggest that 5-HT2 and 5-HT3 receptors in the spinal cord mediate antinociception to chemical stimuli.