The genes coding for two different proteins with homologies to glutaredoxins have been identified in the genome of the malarial parasite Plasmodium falciparum. Both genes were amplified from a gametocytic cDNA and overexpressed in Escherichia coli. The smaller protein (named PfGrx-1) with 12.4 kDa in size exhibits the typical glutaredoxin active site motif "CPYC," shows glutathione-dependent glutaredoxin activity in the beta-hydroxyethyl disulfide (HEDS) assay, and reduces Trypanosoma brucei ribonucleotide reductase. Glutathione:HEDS transhydrogenase activity (approximately 60 milliunits/mg of protein) was clearly detectable in trophozoite extracts from eight different P. falciparum strains and did not differ between chloroquine-resistant and -sensitive parasites. Five different antimalarial drugs at 100 microm did not significantly influence isolated PfGrx-1 activity. In contrast, the second protein (deduced mass 19.9 kDa) with homology to glutaredoxins (31% identity to Schizosaccharomyces pombe in a 140-amino acid overlap) was not active in the HEDS assay; however, its general dithiol reducing activity was demonstrated in the insulin assay in the presence of dithiothreitol. Interestingly, the sequence contains a PICOT (for protein kinase C-interacting cousin of thioredoxin) homology domain, which might suggest regulatory functions of the protein. We named this protein PfGLP-1, for P. falciparum 1-Cys-glutaredoxin-like protein-1. In contrast to glutaredoxins, PfGLP-1 could not be reduced by glutathione. This is the first report on glutaredoxin-like proteins in the family of Plasmodia.