Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins
- PMID: 11481468
- PMCID: PMC55358
- DOI: 10.1073/pnas.161253298
Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins
Abstract
The structure of an intermediate in the initiation to elongation transition of Escherichia coli RNA polymerase has been visualized through region-specific DNA cleavage by the hydroxyl radical reagent FeBABE. FeBABE was tethered to specific sites of the final sigma(70) subunit and incorporated into two specialized paused elongation complexes that obligatorily retain the final sigma(70) initiation subunit and are targets for modification by lambdoid phage late gene antiterminators. The FeBABE cleavage pattern reveals structures similar to open complex, except for notable changes to region 3 of final sigma(70) that might reflect the presence of stably bound transcript. Binding of the antiterminator protein Q displaces the reactivity of FeBABE conjugated to region 4 of final sigma(70), suggesting that final sigma(70) subunit rearrangement is a step in conversion of RNAP to the antiterminating form.
Figures
Similar articles
-
The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation.Mol Cell. 2002 Sep;10(3):611-22. doi: 10.1016/s1097-2765(02)00648-2. Mol Cell. 2002. PMID: 12408828
-
The phage lambda gene Q transcription antiterminator binds DNA in the late gene promoter as it modifies RNA polymerase.Cell. 1992 Jun 26;69(7):1181-9. doi: 10.1016/0092-8674(92)90639-t. Cell. 1992. PMID: 1535556
-
A surface of Escherichia coli sigma 70 required for promoter function and antitermination by phage lambda Q protein.Genes Dev. 1998 Oct 15;12(20):3276-85. doi: 10.1101/gad.12.20.3276. Genes Dev. 1998. PMID: 9784501 Free PMC article.
-
Antitermination by bacteriophage lambda Q protein.Cold Spring Harb Symp Quant Biol. 1998;63:319-25. doi: 10.1101/sqb.1998.63.319. Cold Spring Harb Symp Quant Biol. 1998. PMID: 10384296 Review. No abstract available.
-
RNA polymerase-promoter interactions: the comings and goings of RNA polymerase.J Bacteriol. 1998 Jun;180(12):3019-25. doi: 10.1128/JB.180.12.3019-3025.1998. J Bacteriol. 1998. PMID: 9620948 Free PMC article. Review. No abstract available.
Cited by
-
Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation.J Biol Chem. 2013 Sep 20;288(38):27607-27618. doi: 10.1074/jbc.M113.475434. Epub 2013 Jul 31. J Biol Chem. 2013. PMID: 23902794 Free PMC article.
-
The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo.Elife. 2015 Sep 15;4:e10514. doi: 10.7554/eLife.10514. Elife. 2015. PMID: 26371553 Free PMC article.
-
Quantitative kinetic analysis of the bacteriophage lambda genetic network.Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4470-5. doi: 10.1073/pnas.0500670102. Epub 2005 Feb 22. Proc Natl Acad Sci U S A. 2005. PMID: 15728384 Free PMC article.
-
Initial transcribed sequence mutations specifically affect promoter escape properties.Biochemistry. 2006 Jul 25;45(29):8841-54. doi: 10.1021/bi060247u. Biochemistry. 2006. PMID: 16846227 Free PMC article.
-
The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4488-93. doi: 10.1073/pnas.0409850102. Epub 2005 Mar 10. Proc Natl Acad Sci U S A. 2005. PMID: 15761057 Free PMC article.
References
-
- Gardella T, Moyle H, Susskind M M. J Mol Biol. 1989;206:579–590. - PubMed
-
- Siegele D A, Hu J C, Walter W A, Gross C A. J Mol Biol. 1989;206:591–604. - PubMed
-
- Marr M T, Roberts J W. Science. 1997;276:1258–1260. - PubMed
-
- Roberts C W, Roberts J W. Cell. 1996;86:495–501. - PubMed
-
- Waldburger C, Gardella T, Wong R, Susskind M M. J Mol Biol. 1990;215:267–276. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
