Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors

Nature. 2001 Aug 2;412(6846):510-4. doi: 10.1038/35087518.


Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high-transition-temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of an electron with a phonon would result in an abrupt change of its velocity and scattering rate near the phonon energy. Here we use angle-resolved photoemission spectroscopy to probe electron dynamics-velocity and scattering rate-for three different families of copper oxide superconductors. We see in all of these materials an abrupt change of electron velocity at 50-80 meV, which we cannot explain by any known process other than to invoke coupling with the phonons associated with the movement of the oxygen atoms. This suggests that electron-phonon coupling strongly influences the electron dynamics in the high-temperature superconductors, and must therefore be included in any microscopic theory of superconductivity.