Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;268(15):4217-26.
doi: 10.1046/j.1432-1327.2001.02336.x.

Grass group I pollen allergens (beta-expansins) lack proteinase activity and do not cause wall loosening via proteolysis

Affiliations
Free article

Grass group I pollen allergens (beta-expansins) lack proteinase activity and do not cause wall loosening via proteolysis

L C Li et al. Eur J Biochem. 2001 Aug.
Free article

Abstract

Group I grass pollen allergens make up a subgroup of the beta-expansin family of cell wall loosening proteins in plants. A recent study reported that recombinant Phl p 1, the group I allergen from timothy grass pollen, was associated with papain-like proteinase activity and suggested that expansins loosen the plant cell wall via proteolysis. We tested this idea with three experimental approaches. First, we evaluated three purified native group I allergens from timothy grass, ryegrass and maize (Phl p 1, Lol p 1, Zea m 1) using five proteinase assays with a variety of substrates. The proteins had substantial wall loosening activity, but no detectable proteolytic activity. Thus we cannot confirm proteolytic activity in the pollen allergen class of beta-expansins. Second, we tested the ability of proteinases to induce cell wall extension in vitro. Tests included cysteine proteinases, serine proteinases, aspartic proteinases, metallo proteinases, and aggressive proteinase mixtures, none of which induced wall extension in vitro. Thus, wall proteins are unlikely to be important load-bearing components of the plant cell wall. Third, we tested the sensitivity of beta-expansin activity and native wall extension activity to proteinase inhibitors. The results show that a wide range of proteinase inhibitors (phenylmethanesulfonyl fluoride, N-ethylmaleimide, iodoacetic acid, Pefabloc SC, and others) inhibited neither activity. From these three sets of results we conclude proteolysis is not a likely mechanism of plant cell wall loosening and that the pollen allergen class of beta-expansins do not loosen cell walls via a proteolytic mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources