Full exploitation of the information available in bacterial genome sequences requires the availability of facile tools for rapid genetic manipulation. One bacterium for which new genetic tools are needed is the methylotroph Methylobacterium extorquens AM1. IncQ and small IncP vectors were shown to be unsuitable for use in this bacterium, but a spontaneous mutant of a small IncP plasmid was isolated that functioned efficiently in M. extorquens AM1. This plasmid was sequenced and used as a base for developing improved broad-host-range cloning vectors. These vectors were found to replicate in a wide variety of bacterial species and have the following advantages: (1) high copy number in Escherichia coli; (2) small size (7.2 and 8.0 kb); (3) complete sequences; (4) variety of unique restriction sites; (5) blue-white screening via lacZalpha; (6) conjugative mobilization between bacterial species; and (7) readily adaptable into species-specific promoter-probe and expression vectors. Two low-background promoter-probe vectors were constructed based on these cloning vectors with either lacZ or xylE as reporter genes; these were shown to report gene expression effectively in M. extorquens AM1. Specific expression vectors were developed for use in M. extorquens AM1, which were shown to express foreign genes at significant levels, and a simple strategy is outlined to develop specific expression vectors for other bacteria. The strong mxaF promoter was used for expression, since E. coli lac-derived promoters were expressed at very low levels. This suite of genetic tools will enable a more sophisticated analysis of the physiology of M. extorquens AM1, and these vectors should also be valuable tools in the study of a variety of bacterial species.