This study examines the hypothesis that the cigarette smoke-induced inflammatory process is amplified in severe emphysema and explores the association of this response with latent adenoviral infection. Lung tissue from patients with similar smoking histories and either no (n = 7), mild (n = 7), or severe emphysema (n = 7) was obtained by lung resection. Numbers of polymorphonuclear cells (PMN), macrophages, B cells, CD4, CD8 lymphocytes, and eosinophils present in tissue and airspaces and of epithelial cells expressing adenoviral E1A protein were determined using quantitative techniques. Severe emphysema was associated with an absolute increase in the total number of inflammatory cells in the lung tissue and airspaces. The computed tomography (CT) determined extent of lung destruction was related to the number of cells/m(2) surface area by R(2) values that ranged from 0.858 (CD8 cells) to 0.483 (B cells) in the tissue and 0.630 (CD4 cells) to 0.198 (B cells) in the airspaces. These changes were associated with a 5- to 40-fold increase in the number of alveolar epithelial cells expressing adenoviral E1A protein in mild and severe disease, respectively. We conclude that cigarette smoke-induced lung inflammation is amplified in severe emphysema and that latent expression of the adenoviral E1A protein expressed by alveolar epithelial cells influenced this amplification process.