Template images for nonhuman primate neuroimaging: 1. Baboon

Neuroimage. 2001 Sep;14(3):736-43. doi: 10.1006/nimg.2001.0752.


Coregistration of functional brain images across many subjects offers several experimental advantages and is widely used for studies in humans. Voxel-based coregistration methods require a high-quality 3-D template image, preferably one that corresponds to a published atlas. Template images are available for human, but we could not find an appropriate template for neuroimaging studies in baboon. Here we describe the formation of a T1-weighted structural MR template image and a PET blood flow template, derived from 9 and 7 baboons, respectively. Custom software aligns individual MR images to the MRI template; human supervision is needed only to initially estimate any gross rotational misalignment. In these aligned individual images, internal subcortical fiducial points correspond closely to a photomicrographic baboon atlas with an average error of 1.53 mm. Cortical test points showed a mean error of 1.99 mm compared to the mean location for each point. Alignment of individual PET blood flow images directly to the PET template was compared to a two-step alignment process via each subject's MR image. The two transformations were identical within 0.41 mm, 0.54 degrees, and 1.0% (translation, rotation, and linear stretch; mean). These quantities provide a check on the validity of the alignment software as well as of the template images. The baboon structural MR and blood flow PET templates are available on the Internet (purl.org/net/kbmd/b2k) and can be used as targets for any image registration software.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Validation Study

MeSH terms

  • Animals
  • Brain / diagnostic imaging
  • Brain / physiology*
  • Brain Mapping / methods
  • Cerebrovascular Circulation
  • Female
  • Imaging, Three-Dimensional / methods*
  • Imaging, Three-Dimensional / standards
  • Magnetic Resonance Imaging
  • Male
  • Papio / physiology*
  • Software / standards
  • Tomography, Emission-Computed