Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect

Int J Cancer. 2001 Sep;93(6):773-80. doi: 10.1002/ijc.1413.


Gelsolin, an actin-binding protein, is implicated as a critical regulator in cell motility. In addition, we have reported that cellular levels of gelsolin are decreased in various tumor cells, and overexpression of gelsolin by gene transfer suppresses tumorigenicity. We sought to assess the effects of gelsolin overexpression on metastasis and to determine the importance of a carboxyl-terminus that confers Ca(2+) dependency on gelsolin for effects of its overexpression. Expression vectors with cDNA encoding either full-length wild-type or His321 mutant form, isolated from a flat revertant of Ras-transformed cells and a carboxyl-terminal truncate, C-del of gelsolin, were transfected into a highly metastatic murine melanoma cell line, B16-BL6. Expression of introduced cDNA in transfectants was confirmed using Western blotting, 2-dimensional gel electrophoresis and reverse transcription-polymerase chain reaction (RT-PCR). We characterized phenotypes of transfectants, such as growth rate, colony formation in soft agar, cell motility and metastasis formation in vivo. Transfectants expressing the wild-type, His321 mutant and C-del gelsolin exhibited reduced growth ability in soft agar. Although expression of integrin beta1 or alpha4 on the cell surface of transfectants was not changed, wild-type and His321 mutant gelsolin, except for C-del gelsolin, exhibited retardation of cell spreading, reduced chemotatic migration to fibronectin and suppressed lung colonization in spontaneous metastasis assay. Gelsolin may function as a metastasis suppressor as well as a tumor suppressor gene. The carboxyl-terminus of gelsolin is important for retardation of cell spreading, reduced chemotasis and metastasis suppression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Calcium / metabolism
  • Cell Movement
  • DNA, Complementary / metabolism
  • Electrophoresis, Gel, Two-Dimensional
  • Flow Cytometry
  • Gelsolin / chemistry
  • Gelsolin / pharmacology*
  • Histidine / chemistry
  • Male
  • Melanoma / drug therapy*
  • Melanoma / genetics*
  • Melanoma, Experimental / drug therapy*
  • Melanoma, Experimental / genetics*
  • Mice
  • Mice, Inbred C57BL
  • Mutation
  • Neoplasm Metastasis
  • Phenotype
  • Reverse Transcriptase Polymerase Chain Reaction
  • Time Factors
  • Transfection


  • DNA, Complementary
  • Gelsolin
  • Histidine
  • Calcium