Neural activity correlated with the preparation and execution of visually guided arm movements in the cingulate motor area of the monkey

Exp Brain Res. 2001 Sep;140(2):182-9. doi: 10.1007/s002210100807.

Abstract

Recent anatomical and physiological studies have suggested that parts of the cingulate cortex are involved in the control of movement. These areas have been collectively termed the cingulate motor area (CMA). Currently almost nothing is known, however, about how neurons in the CMA actually participate in the control of movement. Therefore, we investigated the role of cells in the dorsal and ventral banks of the CMA (CMAd and CMAv, respectively) in the preparation and execution of visually guided arm movements. We recorded the activity of neurons while a monkey performed a visually guided, two-dimensional instructed delay task. A monkey was required to operate a joystick that moved a cursor from a centrally located hold target to one of four peripheral targets. Neurons were classified as exhibiting preparatory activity if the neural discharge during the postinstruction delay period was significantly higher than the preinstruction activity. Neurons were classified as exhibiting movement activity if the neural discharge was significantly elevated around the time of the movement. Of the 115 task-related neurons studied, 18 (16%) exhibited only preparatory activity, 48 (42%) exhibited only movement activity, and 49 (43%) exhibited both preparatory and movement activity. Neurons were further classified in terms of their directional tuning. For 51% of neurons with preparatory activity, that activity was directional. A significantly larger proportion of movement-related activity was directional (78%). For neurons with both directional preparatory and movement activity, the preferred directions were highly correlated (r=0.83). The median onset of movement activity was 10 ms before the beginning of movement (range -200 to 200 ms). The patterns and directionality of task-related activity of CMA neurons observed in this study are similar to those previously reported for other cortical motor areas. Together, these data provide preliminary evidence that neurons in CMAd and CMAv play a role in both the preparation and execution of visually guided arm movements.

MeSH terms

  • Animals
  • Arm / physiology
  • Electrophysiology
  • Female
  • Gyrus Cinguli / cytology
  • Gyrus Cinguli / physiology*
  • Macaca nemestrina
  • Movement / physiology*
  • Neurons / physiology*
  • Psychomotor Performance / physiology*