Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes

Biopharm Drug Dispos. 2000 Dec;21(9):353-64. doi: 10.1002/bdd.249.


Six 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (the present cholesterol-lowering drugs known as statins), lovastatin (L), simvastatin (S), pravastatin (P), fluvastatin (F), atorvastatin (A) and cerivastatin (C) are shown to be potent inhibitors of cholesterol synthesis in human hepatocytes, the target tissue for these drugs in man. All six inhibited in the nM range (IC(50) values: 0.2-8.0 nM). As daily used cholesterol-lowering drugs they are likely coadministered with other drugs. While several cytochrome P450 (CYP) enzymes are involved in drug metabolism in the liver and thus play an important role in drug-drug interaction it was investigated which of these enzymes are influenced by the active forms of the six statins. These enzyme activities were studied in human liver microsomal preparations, and in simian and human hepatocytes in primary culture. The following CYP reactions were used: nifedipine aromatization (CYP3A4), testosterone 6beta-hydroxylation (CYP3A4), tolbutamide methylhydroxylation (CYP2C9), S-mephenytoin 4-hydroxylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6), aniline 4-hydroxylation (CYP2E1), coumarin 7-hydroxylation (CYP2A6) and 7-ethoxyresorufin O-dealkylation (CYP1A1/2). In the human liver microsomes the statins (concentrations up to 400 microM) did not influence the CYP1A1/2 activity and hardly the CYP2A6 and CYP2E1 activities. Except P, the other five statins were stronger inhibitors of the CYP2C19 activity with IC(50) values around 200 microM and the same holds for the effect of A, C and F on the CYP2D6 activity. L and S were weaker inhibitors of the latter enzyme activity, whereas P did not influence both activities. About the same was observed for the statin effect on CYP2C9 activity, except that F was a strong inhibitor of this activity (IC(50) value: 4 microM). Using the assay of testosterone 6beta-hydroxylation the CYP3A4 activity was decreased by L, S and F with IC(50) values of about 200 microM and a little more by C and A (IC(50) around 100 microM). P had hardly an effect on this activity. To a somewhat less extent the same trend was seen when CYP3A4 activity was measured using nifedipine as substrate. The inhibitory effects observed in microsomes were verified in suspension culture of freshly isolated hepatocytes from Cynomolgus monkey (as a readily available model) and of human hepatocytes. In general the same trends were seen as in the human microsomes, except that in some cases the inhibition of the CYP activity was less, possibly by the induction of the particular CYP enzyme by incubation of the cells with a particular statin. F remained a strong inhibitor of CYP2C9 activity in human and monkey hepatocytes. A induced the CYP2C9 in monkey hepatocytes but was an inhibitor of the CYP2C9 in human hepatocytes. A, S, L and C were moderate inhibitors in both cellular systems of CYP3A4. P was not affecting any of the CYP activities in the three systems studied. It is concluded that different CYP enzymes interact with different statins and therefore differences in between these drugs are to be expected when drug-drug interaction is considered.

MeSH terms

  • Animals
  • Cholesterol / biosynthesis*
  • Cytochrome P-450 Enzyme Inhibitors
  • Cytochrome P-450 Enzyme System / drug effects*
  • Cytochrome P-450 Enzyme System / metabolism
  • Drug Interactions
  • Hepatocytes / drug effects
  • Hepatocytes / enzymology*
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology*
  • Macaca fascicularis


  • Cytochrome P-450 Enzyme Inhibitors
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Cytochrome P-450 Enzyme System
  • Cholesterol