The octapeptide red pigment-concentrating hormone is capable of eliciting the aggregation of intracellular pigment granules in distal retinal pigment cells of isolated retinas of the crayfish Procambarus clarkii (Girard). The final level and the time course of pigment aggregation are dose dependent within a range of 10(-10) mol l(-1) to 10(-4) mol l(-1). The effect of red pigment-concentrating hormone is prevented by previous incubation with an anti- red pigment-concentrating hormone antibody; however, application of the antibody after the onset of the red pigment-concentrating hormone effect, does not prevent its full development. A similar effect to that elicited by red pigment-concentrating hormone is induced by the calcium ionophores ionomycin and A-23187. Red pigment-concentrating hormone evokes entry of 45Ca2+ to retinal cells. However, the red pigment-concentrating hormone-induced pigment aggregation persists in the presence of the calcium channel blocker verapamil and in Ca2+-free solutions. Caffeine and thapsigargin, known to release calcium from intracellular stores, elicit distal pigment aggregation, while ryanodine and dantrolene, blockers of intracellular calcium release, as well as the intracellular calcium chelator bapta-AM suppress the effect of red pigment-concentrating hormone. These results suggest that red pigment-concentrating hormone elicits distal retinal pigment aggregation by increasing intracellular calcium concentration, acting via a dual mechanism: (1) promoting calcium entry, and (2) releasing intracellular calcium.