Evidence is reviewed concerning the variation of RBE values of high-LET radiations for non-stochastic effects, generally impairment of tissue integrity and function. The RBE values are dependent on the type of radiation, the type of tissue effect and the dose rate or fractionation schedule. RBE values depend strongly on the effect considered, with high values for late effects in lung, kidney and central nervous system. RBE values generally increase with decreasing dose rate or dose per fraction. Maximum values can be derived by extrapolation on the basis of a radiobiological model. These values are denoted RBEm to distinguish them from RBEM derived for stochastic effects, e.g. carcinogenesis. Values of RBEm are generally in the range of 2 to 10 and are considerably smaller by a factor of 2 to 5 than values of RBEM for various types of stochastic effects. RBE values for effects from actual exposures to mixtures of high-LET and low-LET radiations can be derived by considering the doses received and the tissue at risk. Applications of RBEm values will yield estimates of maximum values of equivalent doses and these should only be applied for planning medical interventions if the contribution from high-LET radiation is small. The selection of Q values for radiation protection is mostly based on RBE--values and the application of Q values in cases where non-stochastic effects are important might therefore result in an overestimate of the risks of exposure.