Retention of native-like oligomerization states in transmembrane segment peptides: application to the Escherichia coli aspartate receptor

Biochemistry. 2001 Sep 18;40(37):11106-13. doi: 10.1021/bi010642e.

Abstract

Biophysical study of the transmembrane (TM) domains of integral membrane proteins has traditionally been impeded by their hydrophobic nature. As a result, an understanding of the details of protein-protein interactions within membranes is often lacking. We have demonstrated previously that model TM segments with flanking cationic residues spontaneously fold into alpha-helices upon insertion into membrane-mimetic environments. Here, we extend these studies to investigate whether such constructs consisting of TM helices from biological systems retain their native secondary structures and oligomeric states. Single-spanning TM domains from the epidermal growth factor receptor (EGFR), glycophorin A (GPA), and the influenza A virus M2 ion channel (M2) were designed and synthesized with three to four lysine residues at both N- and C-termini. Each construct was shown to adopt an alpha-helical conformation upon insertion into sodium dodecyl sulfate micelles. Furthermore, micelle-inserted TM segments associated on SDS-PAGE gels according to their respective native-like oligomeric states: EGFR was monomeric, GPA was dimeric, and M2 was tetrameric. This approach was then used to investigate whether one or both of the TM segments (Tar-1 and Tar-2) from the Escherichia coli aspartate receptor were responsible for its homodimeric nature. Our results showed that Tar-1 formed SDS-resistant homodimers, while Tar-2 was monomeric. Furthermore, no heterooligomerization between Tar-1 and Tar-2 was detected, implicating the Tar-1 helix as the oligomeric determinant for the Tar protein. The overall results indicate that this approach can be used to elucidate the details of TM domain folding for both single-spanning and multispanning membrane proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Escherichia coli
  • Membrane Proteins / chemistry*
  • Molecular Sequence Data
  • Peptide Fragments
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Receptors, Amino Acid / chemistry*

Substances

  • Bacterial Proteins
  • Membrane Proteins
  • Peptide Fragments
  • Receptors, Amino Acid
  • aspartic acid receptor