Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 23;276(47):43618-26.
doi: 10.1074/jbc.M104955200. Epub 2001 Sep 11.

Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis

Affiliations
Free article

Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis

E Karatan et al. J Biol Chem. .
Free article

Abstract

In the Gram-positive soil bacterium Bacillus subtilis, the chemoreceptors are coupled to the central two-component kinase CheA via two proteins, CheW and CheV. CheV is a two-domain protein with an N-terminal CheW-like domain and a C-terminal two-component receiver domain. In this study, we show that CheV is phosphorylated in vitro on a conserved aspartate in the presence of phosphorylated CheA (CheA-P). This reaction is slower compared with the phospho-transfer reaction between CheA-P and one other response regulator of the system, CheB. CheV-P is also highly stable in comparison with CheB-P. Both of these properties are more pronounced in the full-length protein compared with a truncated form composed only of the receiver domain, that is, deletion of the CheW-like domain results in increase in the rate of the phospho-transfer reaction and decrease in stability of the phosphorylated protein. Phosphorylation of CheV is required for adaptation to the addition of the chemoattractant asparagine. In tethered-cell assays, strains expressing an unphosphorylatable point mutant of cheV or a truncated mutant lacking the entire receiver domain are severely impaired in adaptation to the addition of asparagine. Both of these strains, however, show near normal counterclockwise biases, suggesting that in the absence of the attractant the chemoreceptors are efficiently coupled to CheA kinase by the mutant CheV proteins. Inability of the CheW-like domain of CheV to support complete adaptation to the addition of asparagine also suggests that unlike CheW, this domain by itself may lead to the formation of signaling complexes that stay overactive in the presence of the attractant. A possible structural basis for this feature is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources