Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents

Curr Med Chem. 2001 Oct;8(12):1487-503. doi: 10.2174/0929867013371996.


As a result of substantial advances in recent cancer biology, cell cycle regulation in the G1 phase has attracted a great deal of attention as a promising target for the research and treatment of cancer. Many of the important genes associated with G1 regulation have been shown to play a key role in proliferation, differentiation and oncogenic transformation and programmed cell death (apoptosis). Currently, a variety of "cytostatic" agents that affects G1 progression and/or G1/S transition are being evaluated in clinical trials. Flavopiridol is a potent inhibitor of cyclin-dependent kinases (CDKs). UCN-01 was originally found to be a PKC-selective protein kinase antagonist. More recent studies have revealed that this agent can also inhibit several CDKs and the checkpoint kinase CHK1. FR901228, MS-27-275 and SAHA are histone deacetylase inhibitors that induce changes in the transcription of specific genes via the hyperacetylation of histones. The proteasome inhibitor PS-341 disrupts the degradation process of intracellular proteins, including cell cycle regulatory proteins such as cyclins. R115777, SCH66336 and BMS-214662 are non-peptidic farnesyl transferase inhibitors that prevent p21 ras oncogene activation. Rapamycin derivative CCI-779 downregulates signals through S6 kinase and FRAP (FKBP-rapamycin associating protein), affecting the expression levels of mRNAs important for progression from G1 to S phase. 17-Allylaminogeldanamycin targets the Hsp-90 (heat shock protein-90) family of cellular chaperones regulating the function of signaling proteins. TNP-470 (AGM-1470), a fumagillin derivative shows antiangiogenic action through binding to MetAP-2 (methionine aminopeptidase-2). The antitumor sulfonamide E7070, causing a cellular accumulation in the G1 phase, has been shown to suppress the activation of CDK2 and cyclin E expression in HCT116 colorectal cancer cell line highly sensitive to the drug. With respect to several growth factor receptors such as EGFR, PDGFR, bFGFR and VEGFR, potent and specific inhibitors of receptor tyrosine kinases have been also examined as hopeful drug candidates. In this report, we review the current status of extensive efforts directed towards the discovery and development of new chemotherapeutic anticancer agents targeting cell cycle regulation in the G1 phase, with particular focus on the compounds undergoing clinical investigations.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • G1 Phase / drug effects*
  • Humans
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism


  • Antineoplastic Agents