Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance

Biochem J. 2001 Oct 1;359(Pt 1):175-81. doi: 10.1042/0264-6021:3590175.


Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180-->Leu, Gly-262-->Ala, Gly-262-->Val, Phe-327-->Tyr and Gly-365-->Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262-->Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholinesterase / chemistry
  • Acetylcholinesterase / genetics*
  • Acetylcholinesterase / metabolism
  • Amino Acid Substitution
  • Animals
  • Baculoviridae
  • Carbamates*
  • Cholinesterase Inhibitors / pharmacology
  • DNA Primers / chemistry
  • DNA, Complementary
  • Drosophila melanogaster / enzymology
  • Genotype
  • Houseflies / enzymology*
  • Insecticide Resistance / genetics*
  • Insecticides / pharmacology*
  • Mutagenesis, Site-Directed
  • Mutation*
  • Organophosphorus Compounds*
  • Polymerase Chain Reaction
  • Protein Conformation
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Torpedo / metabolism


  • Carbamates
  • Cholinesterase Inhibitors
  • DNA Primers
  • DNA, Complementary
  • Insecticides
  • Organophosphorus Compounds
  • Recombinant Proteins
  • Acetylcholinesterase