An assessment of jet and ultrasonic nebulisers for the delivery of lactate dehydrogenase solutions

Int J Pharm. 2001 Oct 4;227(1-2):121-31. doi: 10.1016/s0378-5173(01)00790-6.


The aim of this study was to investigate the suitability of commercial jet and ultrasonic nebulisers for effective delivery of the model hydrophilic protein lactate dehydrogenase (LDH). Two jet nebulisers (Pari LC Plus and Pari LC Star) and two ultrasonic nebulisers (Sonix 2000 and Omron U1) were used to nebulise LDH solutions and the effects on protein activity and protein concentration determined. The size distribution of the aerosols produced, measured by laser diffraction analysis, temperature changes during nebulisation, the time to atomise a 5 ml dose volume and the mass output of the four nebulisers were compared. A twin impinger (TI) was used to collect the nebulised protein, which was assayed for total and active protein content. There was a large variation in the median size and size distribution of the aerosols produced by each of the nebulisers from LDH and Sørensen's modified phosphate buffer, and in the time taken to reach the sputtering phase of aerosolisation. During use, the concentration of LDH increased in the Omron U1 nebuliser, but did not change significantly in the others. The temperature of the protein solution decreased by approximately 8 degrees C during jet nebulisation but increased by 3 and 10 degrees C in the Omron U1 and Sonix 2000 nebulisers, respectively. Denaturation of LDH within the nebuliser reservoir, occurred in the order Sonix>Pari LC Plus>Pari LC Star>Omron U1, whilst the deposition of active and total protein within the stages and throat of the TI was a function of the particle size of the aerosols generated and the specific device used.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerosols
  • Equipment Design
  • L-Lactate Dehydrogenase / administration & dosage*
  • Nebulizers and Vaporizers*
  • Solutions


  • Aerosols
  • Solutions
  • L-Lactate Dehydrogenase