Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis

J Biol Chem. 2001 Dec 14;276(50):47474-82. doi: 10.1074/jbc.M106747200. Epub 2001 Oct 1.


The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the betaA-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four beta-strands (betaA-betaB-betaD-betaC) and two helices (alpha2 and alpha3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C(70) polymer rather than the C(55) polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C(30) intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C(55) product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C(55) product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k(cat) values. W75A showed an 8-fold increase of the FPP K(m) value, and 22-33-fold increases in the IPP K(m) values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alanine / chemistry
  • Alkyl and Aryl Transferases / chemistry*
  • Alkyl and Aryl Transferases / genetics
  • Alkyl and Aryl Transferases / metabolism
  • Amino Acid Sequence
  • Animals
  • Aspartic Acid / chemistry
  • Binding Sites
  • Catalysis
  • Crystallography, X-Ray
  • Detergents / pharmacology
  • Dimerization
  • Escherichia coli / chemistry*
  • Escherichia coli / enzymology*
  • Kinetics
  • Lipid Bilayers / metabolism
  • Models, Biological
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Mutation
  • Octoxynol / pharmacology
  • Protein Binding
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Sequence Homology, Amino Acid
  • Time Factors


  • Detergents
  • Lipid Bilayers
  • Aspartic Acid
  • Octoxynol
  • Alkyl and Aryl Transferases
  • undecaprenyl pyrophosphate synthetase
  • Alanine

Associated data

  • PDB/1JP3