TGF-beta Signaling in Tumor Suppression and Cancer Progression

Nat Genet. 2001 Oct;29(2):117-29. doi: 10.1038/ng1001-117.

Abstract

Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor beta (TGF-beta) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-beta on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-beta signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-beta in tumor development and attempt to reconcile the positive and negative effects of TGF-beta in carcinogenesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Disease Progression
  • Humans
  • Neoplasms / metabolism
  • Neoplasms / pathology*
  • Signal Transduction*
  • Transforming Growth Factor beta / physiology*

Substances

  • Transforming Growth Factor beta