Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF

Nat Neurosci. 2001 Nov;4(11):1093-101. doi: 10.1038/nn735.


Dynamic developmental changes in axon arbor morphology may directly reflect the formation, stabilization and elimination of synapses. We used dual-color imaging to study, in the live, developing animal, the relationship between axon arborization and synapse formation at the single cell level, and to examine the participation of brain-derived neurotrophic factor (BDNF) in synaptogenesis. Green fluorescent protein (GFP)-tagged synaptobrevin II served as a marker to visualize synaptic sites in individual fluorescently labeled Xenopus optic axons. Time-lapse confocal microscopy revealed that although most synapses remain stable, synapses are also formed and eliminated as axons branch and increase their complexity. Most new branches originated at GFP-labeled synaptic sites. Increasing BDNF levels significantly increased both axon arborization and synapse number, with BDNF increasing synapse number per axon terminal. The ability to visualize central synapses in real time provides insights about the dynamic mechanisms underlying synaptogenesis, and reveals BDNF as a modulator of synaptogenesis in vivo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axons / physiology*
  • Axons / ultrastructure
  • Brain-Derived Neurotrophic Factor / pharmacology*
  • Coculture Techniques
  • Fluorescent Dyes / metabolism
  • Green Fluorescent Proteins
  • Image Processing, Computer-Assisted
  • Indicators and Reagents / metabolism
  • Luminescent Proteins / genetics
  • Luminescent Proteins / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Microscopy, Confocal
  • Nerve Tissue Proteins / metabolism
  • R-SNARE Proteins
  • Recombinant Fusion Proteins / metabolism
  • Retinal Ganglion Cells / cytology
  • Retinal Ganglion Cells / drug effects*
  • Retinal Ganglion Cells / physiology*
  • Superior Colliculi / cytology
  • Superior Colliculi / metabolism
  • Synapses / physiology*
  • Synaptosomal-Associated Protein 25
  • Time Factors
  • Xenopus laevis


  • Brain-Derived Neurotrophic Factor
  • Fluorescent Dyes
  • Indicators and Reagents
  • Luminescent Proteins
  • Membrane Proteins
  • Nerve Tissue Proteins
  • R-SNARE Proteins
  • Recombinant Fusion Proteins
  • Synaptosomal-Associated Protein 25
  • postsynaptic density proteins
  • Green Fluorescent Proteins