Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic Streptococci: evolutionary implications for prophage-host interactions

Virology. 2001 Sep 30;288(2):325-41. doi: 10.1006/viro.2001.1085.


The genome of the highly pathogenic M1 serotype Streptococcus pyogenes isolate SF370 contains eight prophage elements. Only prophage SF370.1 could be induced by mitomycin C treatment. Prophage SF370.3 showed a 33.5-kb-long genome that closely resembled the genome organization of the cos-site temperate Siphovirus r1t infecting the dairy bacterium Lactococcus lactis. The two-phage genomes shared between 60 and 70% nucleotide sequence identity over the DNA packaging, head and tail genes. Analysis of the SF370.3 genome revealed mutations in the replisome organizer gene that may prevent the induction of the prophage. The mutated phage replication gene was closely related to a virulence marker identified in recently emerged M3 serotype S. pyogenes strains in Japan. This observation suggests that prophage genes confer selective advantage to the lysogenic host. SF370.3 encodes a hyaluronidase and a DNase that may facilitate the spreading of S. pyogenes through tissue planes of its human host. Prophage SF370.2 showed a 43-kb-long genome that closely resembled the genome organization of pac-site temperate Siphoviridae infecting the dairy bacteria S. thermophilus and L. lactis. Over part of the structural genes, the similarity between SF370.2 and S. thermophilus phage O1205 extended to the nucleotide sequence level. SF370.2 showed two probable inactivating mutations: one in the replisome organizer gene and another in the gene encoding the portal protein. Prophage SF370.2 also encodes a hyaluronidase and in addition two very likely virulence factors: prophage-encoded toxins acting as superantigens that may contribute to the immune deregulation observed during invasive streptococcal infections. The superantigens are encoded between the phage lysin and the right attachment site of the prophage genome. The genes were nearly sequence identical with a DNA segment in S. equi, suggesting horizontal gene transfer. The trend for prophage genome inactivation was even more evident for the remaining five prophage sequences that showed massive losses of prophage DNA. In these prophage remnants only 13-0.3 kb of putative prophage DNA was detected. We discuss the genomics data from S. pyogenes strain SF370 within the framework of Darwinian coevolution of prophages and lysogenic bacteria and suggest elements of genetic cooperation and elements of an arms race in this host-parasite relationship.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacteriophages / genetics*
  • Evolution, Molecular*
  • Genome, Viral*
  • Lactococcus lactis / genetics
  • Lactococcus lactis / virology*
  • Streptococcus Phages / genetics*
  • Streptococcus pyogenes / genetics
  • Streptococcus pyogenes / virology*