Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer

J Biol Chem. 2001 Dec 21;276(51):48040-7. doi: 10.1074/jbc.M105668200. Epub 2001 Oct 22.

Abstract

Dimerization of some G protein-coupled receptors has recently been demonstrated, but how widespread this phenomenon might be and its functional implications are not yet clear. We have utilized biophysical and biochemical techniques to evaluate whether the type A cholecystokinin (CCK) receptor can form oligomeric complexes in the plasma membrane and the impact of ligand binding and signaling on such complexes. We investigated the possibility of bioluminescence resonance energy transfer (BRET) between receptor constructs that included carboxyl-terminal tags of Renilla luciferase or yellow fluorescent protein. Indeed, co-expression of these constructs in COS cells resulted in the constitutive presence of a significant BRET signal above that in a series of controls, with this signal reduced by co-expression of competing non-tagged CCK receptors. The presence of an oligomeric complex of CCK receptor molecules was confirmed in co-immunoprecipitation experiments. Occupation of CCK receptors with agonist ligands (CCK or gastrin-4) resulted in the rapid reduction in BRET signal in contrast to the enhancement of such a signal reported after agonist occupation of the beta(2)-adrenergic receptor. These effects on CCK receptor oligomerization were concentration-dependent, correlating with the potencies of the agonists. A smaller effect was observed for a partial agonist, and no effect was observed for antagonist occupation of this receptor. Agonist-induced reduction in BRET signal was also observed for pairs of CCK receptors with a donor-acceptor pair situated in other positions within the receptor. Manipulation of the phosphorylation state of CCK receptor using protein kinase C activation with phorbol ester or inhibition with staurosporine had no effect on the basal level or agonist effect on CCK receptor oligomerization. This provides the first evidence for CCK receptor oligomerization in living cells, with insights that the active conformation of this receptor dissociates these complexes in a phosphorylation-independent manner.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Biopolymers
  • Cell Line
  • DNA Primers
  • Energy Transfer
  • GTP-Binding Proteins / metabolism*
  • Luminescent Measurements
  • Rats
  • Receptors, Cholecystokinin / agonists
  • Receptors, Cholecystokinin / metabolism*

Substances

  • Biopolymers
  • DNA Primers
  • Receptors, Cholecystokinin
  • GTP-Binding Proteins