pH-dependent conformational flexibility within the ribosomal peptidyl transferase center

RNA. 2001 Oct;7(10):1403-15.

Abstract

A universally conserved adenosine, A2451, within the ribosomal peptidyl transferase center has been proposed to act as a general acid-base catalyst during peptide bond formation. Evidence in support of this proposal came from pH-dependent dimethylsulfate (DMS) modification within Escherichia coli ribosomes. A2451 displayed reactivity consistent with an apparent acidity constant (pKa) near neutrality, though pH-dependent structural flexibility could not be rigorously excluded as an explanation for the enhanced reactivity at high pH. Here we present three independent lines of evidence in support of the alternative interpretation. First, A2451 in ribosomes from the archaebacteria Haloarcula marismortui displays an inverted pH profile that is inconsistent with proton-mediated base protection. Second, in ribosomes from the yeast Saccharomyces cerevisiae, C2452 rather than A2451 is modified in a pH-dependent manner. Third, within E. coli ribosomes, the position of A2451 modification (N1 or N3 imino group) was analyzed by testing for a Dimroth rearrangement of the N1-methylated base. The data are more consistent with DMS modification of the A2451 N1, a functional group that, according to the 50S ribosomal crystal structure, is solvent inaccessible without structural rearrangement. It therefore appears that pH-dependent DMS modification of A2451 does not provide evidence either for or against a general acid-base mechanism of protein synthesis. Instead the data suggest that there is pH-dependent conformational flexibility within the peptidyl transferase center, the exact nature and physiological relevance of which is not known.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Escherichia coli / genetics
  • Haloarcula marismortui / genetics
  • Hydrogen-Ion Concentration
  • Methylation
  • Molecular Sequence Data
  • Nucleic Acid Conformation
  • Peptidyl Transferases / metabolism*
  • Protein Conformation*
  • RNA, Ribosomal, 23S / genetics
  • Ribosomes / enzymology*
  • Saccharomyces cerevisiae / genetics
  • Transcription, Genetic

Substances

  • RNA, Ribosomal, 23S
  • Peptidyl Transferases