Contrasting genome organisation: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome

Genome. 2001 Oct;44(5):808-17.


Brassica crop species are of worldwide importance and are closely related to the model plant Arabidopsis thaliana for which the complete genome sequence has recently been established. We investigated collinearity of marker order by comparing two contrasting regions of the Brassica oleracea genome with homologous regions of A. thaliana. Although there is widespread replication of marker loci in both A. thaliana and B. oleracea, we found that a combination of genetic markers mapped in B. oleracea, including RFLPs, CAPS, and SSRs allowed comparison and interpretation of medium-scale chromosomal organisation and rearrangements. The interpretation of data was facilitated by hybridising probes onto the whole A. thaliana genome, as represented by BAC contigs. Twenty marker loci were sampled from the whole length of the shortest B. oleracea linkage group, 06, and 21 from a 30.4-cM section of the longest linkage group, 03. There is evidence of locus duplication on linkage group 06. Locus order is well conserved between a putative duplicated region of 10.5 cM and a discrete region comprising 25 cM of A. thaliana chromosome I. This was supported by evidence from seven paralogous loci, three of which were duplicated in a 30.6-cM region of linkage group 06. The pattern of locus order for the remainder of linkage group 06 and the sampled section of linkage group 03 was more complex when compared with the A. thaliana genome. Although there was some conservation of locus order between markers on linkage group 03 and approximately 9 cM of A. thaliana chromosome I, this was superimposed upon a complex pattern of additional loci that were replicated in both A. thaliana and B. oleracea. The results are discussed in the context of the ability to use collinear information to assist map-based cloning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Brassica / genetics*
  • Chromosome Mapping
  • DNA Probes
  • Gene Library
  • Gene Rearrangement
  • Genetic Markers
  • Genome, Plant*
  • Sequence Homology


  • DNA Probes
  • Genetic Markers