Tamoxifen resistance in breast cancer: elucidating mechanisms

Drugs. 2001;61(12):1721-33. doi: 10.2165/00003495-200161120-00004.

Abstract

Tamoxifen has been used for the systemic treatment of patients with breast cancer for nearly three decades. Treatment success is primarily dependent on the presence of the estrogen receptor (ER) in the breast carcinoma. While about half of patients with advanced ER-positive disease immediately fail to respond to tamoxifen, in the responding patients the disease ultimately progresses to a resistant phenotype. The possible causes for intrinsic and acquired resistance have been attributed to the pharmacology of tamoxifen, alterations in the structure and function of the ER, the interactions with the tumour environment and genetic alterations in the tumour cells. So far no prominent mechanism leading to resistance has been identified. The recent results of a functional screen for breast cancer antiestrogen resis- tance (BCAR) genes responsible for development of tamoxifen resistance in human breast cancer cells are reviewed. Individual BCAR genes can transform estrogen-dependent breast cancer cells into estrogen-independent and tamoxifen-resistant cells in vitro. Furthermore, high levels of BCAR1/pl30Cas protein in ER-positive primary breast tumours are associated with intrinsic resistance to tamoxifen treatment. These results indicate a prominent role for alternative growth control pathways independent of ER signalling in intrinsic tamoxifen resistance of ER-positive breast carcinomas. Deciphering the differentiation characteristics of normal and malignant breast epithelial cells with respect to proliferation control and regulation of cell death (apoptosis) is essential for understanding therapy response and development of resistance of breast carcinoma.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antineoplastic Agents, Hormonal / therapeutic use*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / pathology
  • Drug Resistance, Neoplasm*
  • Estrogen Antagonists / pharmacology
  • Female
  • Humans
  • Receptors, Estrogen / drug effects
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / physiology
  • Tamoxifen / therapeutic use*

Substances

  • Antineoplastic Agents, Hormonal
  • Estrogen Antagonists
  • Receptors, Estrogen
  • Tamoxifen